Abstract

New magnesium-based bulk metallic glasses Mg60Cu30Y10 have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.