Abstract

The three-dimensional structures of two types of cyanobacterium-dominated microbial mats from meltwater ponds on the McMurdo Ice Shelf were as determined by using a broad suite of complementary techniques, including optical and fluorescence microscopy, confocal scanning laser microscopy, scanning electron microscopy with back-scattered electron-imaging mode, low-temperature scanning electron microscopy, and microanalyitical X-ray energy dispersive spectroscopy. By using a combination of the different in situ microscopic techniques, the Antarctic microbial mats were found to be structures with vertical stratification of groups of cyanobacteria and mineral sediments, high contents of extracellular polymeric substances, and large void spaces occupied by water. In cyanobacterium-rich layers, heterocystous nostocalean and nonheterocystous oscillatorialean taxa were the most abundant taxa and appeared to be intermixed with fine-size deposits of epicellular silica and calcium carbonate. Most of the cyanobacterial filaments had similar orientations in zones without sediment particles, but thin filaments were tangled among thicker filaments. The combination of the microscopic techniques used showed the relative positions of biological and mineral entities within the microbial mats and enabled some speculation about their interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.