Abstract

The microstructure of a cobalt-base alloy (Co–Cr–Mo) obtained by the investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. This work focuses on the resulting microstructures arising from samples poured under industrial environment conditions, of three different Co–Cr–Mo alloys. For this purpose, we used: 1) an alloy built up from commercial purity constituents, 2) a remelted alloy and 3) a certified alloy for comparison. The characterization of the samples was achieved by using optical microscopy (OM) with a colorant etchant to identify the present phases and scanning electron microscopy (SE-SEM) and energy dispersion spectrometry (EDS) techniques for a better identification. In general the as-cast microstructure is a Co-fcc dendritic matrix with the presence of a secondary phase, such as the M23C6 carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloys. Other minority phases were also reported and their presence could be linked to the cooling rate and the manufacturing process variables and environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.