Abstract

Metal additive manufacturing (AM) is an innovative manufacturing technology that uses a high-power laser for the layer-by-layer production of metal components. Despite many achievements in the field of AM, few studies have focused on the nondestructive characterization of microstructures, such as grain size and porosity. In this study, various microstructures of additively manufactured metal components were characterized non-destructively using linear/nonlinear ultrasonic techniques. The contributions of this study are as follows: (1) presenting correlation analyses of various microstructures (grain size and texture, lack of fusion, and porosity) and ultrasonic properties (ultrasonic velocity, attenuation, and nonlinearity parameters), (2) development of nondestructive microstructural characterization techniques for additively manufactured components; and (3) exploring the potential for the online monitoring of AM processes owing to the nondestructive nature of the proposed technique. The performance of the proposed technique was validated using additively manufactured samples under varying laser beam speed conditions. The characteristics of the target microstructures characterized using the proposed technique were consistent with the results obtained using destructive optical microscopy and electron back-scattered diffraction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.