Abstract
The corrosion resistance of a Zr–0.7Sn–1Nb–0.03Fe–0.2Ge (wt%) alloy was investigated by autoclave test in lithiated water with 0.01 M LiOH at 360 °C under a pressure of 18.6 MPa. The microstructure of the oxide film which formed was examined by TEM and SEM. The results revealed that there were a few micro-cracks and more ZrO2 columnar grains in the oxide film formed after exposure for 190 days. The oxidation of second-phase particles (SPPs) was slower than that of α-Zr matrix. The c-ZrO2 was observed around the [Zr–Nb–Fe–Cr–Ge]O SPPs. The amorphous phase produced around the [Zr–Nb–Fe–Cr–Ge]O SPPs could relax the stress in the oxide film. The addition of Ge can reduce micro-pores and micro-cracks formed in oxide film, and delay the microstructural evolution from columnar grains to equiaxed grains. Therefore, the addition of Ge can improve the corrosion resistance of the Zr–0.7Sn–1Nb–0.03Fe alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.