Abstract

A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al–Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigated. Besides the microstructures of primary Si particles and α(Al)+β-Si eutectic phases, non-equilibrium α(Al) particles or dendrites are discovered in the microstructure of the Al–20Si–2Cu–0.4Mg–1Ni alloy. Rapid cooling generated by squeeze casting process rather than the pressure is considered as the main reason for the formation of non-equilibrium α(Al) phase. The sound pressurizing effect of ultrasonic vibration also enables the non-equilibrium α(Al) phases to form above eutectic temperature and grow into non-dendritic spheroids in the process of semi-solid slurry preparation. Non-equilibrium α(Al) phases formed in the hypereutectic Al–Si alloy with ultrasonic vibration treatment, consist of round α(Al) grains formed above the eutectic temperature and a small amount of fine α(Al) dendrites formed under the eutectic temperature. The volume fraction of primary Si particles is decreased significantly by the effect of ultrasonic vibration through increasing the solid solubility of Si atoms in α(Al) matrix and decreasing the forming temperature range of primary Si particles. The average particle diameter and the volume fraction of primary Si particles in microstructure of the swash-plate by rheo-squeeze casting are 24.3 μm and 11.1%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.