Abstract

Abstract The microstructural evolution of TiAl matrix composites with a novel network distribution of Ti2AlN particle reinforcement was studied. The composites were synthesized by reaction hot pressing method using pure Al and nitrided Ti powders as initial materials. Pure Ti powders nitrided at 600 °C for a certain time in an atmosphere of flowing nitrogen turned into new compound Ti(N) powders, which have a shell of titanium nitrides (such as TiN, Ti2N and TiN0.3) and a core of Ti–N solid solution. Within the composites synthesized, Ti2AlN particles, produced by in situ reaction, exhibit a network distribution. The special shell/core structure of the compound Ti(N) powders contributes to this architecture. Nitriding time of the Ti powders greatly affects the microstructure of the composites. Increasing the nitriding time is beneficial to the distribution of Ti2AlN particles in a continuous network form. However, too long nitriding time can result in the aggregation of Ti2AlN particles and thus destroy the uniformity of the network structure. The in-situ synthesized Ti2AlN/TiAl composites with uniform network structure have a superior mechanical property, and their compressive strengths at 800 °C and 1000 °C are 1112 MPa and 687 MPa, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.