Abstract
The microstructure and mechanical properties of Al-Si-Cu-Mg alloys containing 12 wt.% to 30 wt.% Si are discussed. The eutectic and primary silicon particles are nodulized by a designed modification practice followed by a solution heat treatment of 6 h to 8 h at 510°C to 520°C. Metallographic analysis was used to measure structural characteristics of the Si-rich structures. Spheroidization of silicon phase leads to an increase in tensile strength and ductility of alloys at room temperature and 300°C compared with commercial Al-Si alloy. Increasing Si concentration causes the ultimate tensile strength and elongation at room temperature to fall due to the appearance of coarse silicon particles, but the ultimate tensile strength at 300°C remains unchanged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.