Abstract

Stellite 6 (Co-29.5%Cr-5%W-1.2%C in wt%) is traditionally used as a hardfacing material in the primary circuit of pressurised water reactors (PWRs) due to its good corrosion and wear resistance in water at up to 300 °C. In this study, pin-on-disc type sliding contact tribocorrosion testing was conducted on HIPed Stellite 6 at 20 °C and 250 °C using a bespoke tribometer to simulate a primary circuit environment. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize, for the first time, the material affected by tribocorrosion. Whilst the material loss increases by 16–39 times when the test temperature is increased from 20 °C to 250 °C, the mechanisms of degradation and deformation remain largely unchanged. Furthest from the sliding contact, strain is principally accommodated by the deformation-induced transformation of the γ Co-based matrix to ε-martensite. Closer to the sliding contact, the ε-martensite phase accommodates further strain via twinning and dislocation slip. At the sliding contact the intense deformation generates a nanocrystalline structure. The tribologically affected material is resistant to plastic strain localisation; this confines wear to the nanoscale where the synergistic effects of chemical degradation and mechanical deformation permit the removal of nanoscale particulates (corrosion enhanced nanowear (tribocorrosion)). The increased wear rate at 250 °C is attributed to a temperature dependent increase in corrosion enhanced nanowear. The degradation mechanisms revealed are important for the design of future hardfacings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.