Abstract

Porous silicon finds numerous applications in the areas of bio-technology, drug delivery, energetic materials and catalysis. Recent studies by Vesta Sciences have led to the development of porous silicon nanosponge particles from metallurgical grade silicon powder through their own patented chemical etching process (Irish patent no. IE20060360). This discovery paves the way for a more economical production method for porous silicon. The study presented here studies the structural morphology of the porous silicon nanosponge particles using high resolution electron microscopy techniques combined with porisometry type measurements, where appropriate. The related surface pore structure is examined in detail using Scanning Electron Microscopy and Transmission Electron Microscopy techniques while the internal pore structure is explored using Focused Ion Beam milling and ultramicrotomed cross-sections. Three samples of the silicon particles were analysed for this study which include the starting metallurgical grade silicon powder and two samples that have been chemically etched. Analysis of the etched samples indicates a disordered pore structure with pore diameters ranging up to 15 nm on porous silicon particles ranging up to 5 μm in size. Crystallographic orientation did not appear to affect the surface pore opening diameter. Internal pore data indicated pore depths of up to 1 μm dependant on the particle size and etching conditions applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.