Abstract
The pore structure of lightweight granules made from masonry rubble was studied in order to better understand their engineering properties. Thermally and hydrothermally hardened granules were tested. Analysis by ESEM, mercury porosimetry and sorption methods yield important insight into their microstructure. The thermal granules are characterised by partly melted vitreous areas and large internal macropores that are connected via narrow throats. They show a marginal specific surface area along with a hydrophobic behaviour. In contrast, the hydrothermal granules have an accessible mesoporous system containing plate-like and ink-bottle pores. The shape of their water isotherms depending on the granules’ CaO content is sensitive to the morphology of calcium silicate hydrate phases (CSH). The hysteresis changes from a narrow loop that closes at low pressures, which can be attributed to coarser more crystalline CSH, to a large triangular-shaped loop along with a low pressure hysteresis, which is characteristic for fine fibre-like CSH with ink-bottle and plate-like pore morphologies. Granules with fibre-like CSH have the higher specific surfaces areas but those with more crystalline CSH show stronger physisorption of water molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.