Abstract

Pores in the sclera are a candidate pathway for aqueous transport and therefore can be utilized to decrease the intraocular pressure (IOP) in glaucomatous eyes. Since pore formation is a well-known mechanism for stress relaxation in solids, laser-induced creation of pores in cartilage increases hydraulic permeability and promotes tissue regeneration. The aim of this paper is to demonstrate the thermo-mechanical effect of non-destructive laser irradiation on microstructural changes in sclera, in particular pore formation, resulting in substantial increase of water permeability of eye tissues that can be a novel approach to normalize the IOP. Experiments were performed ex vivo on eight eyes of four mini-pigs and in vivo on eight eyes of four rabbits using pulse repetitive laser radiation of 1.56 µm in wavelength. Twenty laser spots of 0.6 mm in diameter with laser settings (power 0.9 W, pulse duration of 200 milliseconds, pulse repetition rate of 2 Hz) resulting in substantial increase of sclera hydraulic permeability were applied on the sclera at 1-2 mm from the eye limb. Sclera and underlying structures (choroid and ciliary body) of the rabbits' eyes were examined histologically in 1 and 45 days after laser irradiation, atomic force microscope (AFM) was applied before and after laser irradiation. Histological and AFM examinations have clearly recognized laser-assisted stable structural alterations: rarefication of the collagen structure in the laser irradiated zone and formation of sub-micron pores. Laser-induced alterations in the structure of ciliary bodies were small in size and mainly reversible. We have proposed a possible mechanism of the arising pores stabilization due to formation of small stable gas bubbles in sclera tissue. It is shown, for the first time, that thermo-mechanical effect of pulse repetitive laser irradiation results in pores formation in sclera. That can be a basis of a novel, safe, and effective technique for IOP normalization due to enhancing of uveoscleral outflow under non-destructive laser irradiation of the sclera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call