Abstract
Hydrogen embrittlement of modern high strength steels consists of different interacting time-dependent mechanisms. One of these mechanisms is hydrogen diffusion and trapping to accumulate hydrogen in critical areas with high mechanical loads. Therefore, understanding hydrogen diffusion and trapping behavior of carbides containing high strength steels is an essential part to effectively increase the hydrogen resistance. For that purpose, a microstructural based model was developed and parametrized to Fe–C–V and Fe–C–Ti alloys. Generalized analytical equations were derived to describe the evolution of different kinds of trap densities with the measured carbide mean radius, annealing temperature or dislocation density. Finally, the models support the idea of hydrogen trapping at carbon vacancies and coherent interface positions. In future, these models are well suited for finite element process simulations of industrial components to predict the local solubility and chemical diffusion as demonstrated in the last section of this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.