Abstract

Aqueous dispersions of pure sodium and calcium smectite clays with platelet sizes on the order of a few hundred nanometers were characterized using a combination of cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS). With monovalent sodium counterions the clay is dispersed as individual platelets, as seen by cryo-TEM, that order into a nematic phase. From SAXS a one-dimensional swelling of the clay in water is observed with the characteristic spacing hs = δ/ϕc, where hs is the separation between the platelets, δ = 1 nm is the effective platelet thickness, and ϕc is the clay volume fraction in the sample. In calcium montmorillonite, on the other hand, cryo-TEM images clearly show the presence of tactoids, where the platelets have aggregated into stacks with a periodic spacing of 2 nm. From imaging a large number of tactoids the distribution function f(N) for the number of platelets per tactoid was estimated, and the average number ⟨N⟩ ≈ 10. The characteristic 2 nm spacing as well as the small number of platelets per tactoid was also confirmed by SAXS. The present study demonstrates that cryo-TEM, with carefully prepared specimen, is a very useful technique to characterize clay dispersions, particularly in aggregated systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.