Abstract

A modified technique was developed by electron beam irradiation to prepare tin dioxide (SnO2) nanocrystals using the sol-gel method. SnO2 nanoparticles were radiated under a 1,400 KGy dose. The morphology and microstructure of the SnO2 nanocrystals were investigated by X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results indicate that the irradiated SnO2 nanoparticles have better crystallinity than unirradiated SnO2 nanoparticles, and the resulting nanocrystals have a tetragonal rutile crystalline structure. The HRTEM image proves that the average grain size is about 4 nm, and the clear lattice fringes indicate the improvement of SnO2 nanocrystals after irradiation. The Raman spectrum shows that there are new peaks at 535 cm(-1) and 691 cm(-1). The optical properties of SnO2 nanoparticles were characterized by ultraviolet-visible (UV-vis) and photoluminescence spectrophotometers. The band gap energy of the irradiated SnO2 was 3.29 eV smaller than that of the unirradiated SnO2 due to size effects and some defects of SnO2 nanocrystals. This work provides a novel approach for the improvement of SnO2 nanocrystals. The optical properties of the irradiated SnO2 nanomaterials are also expected to improve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.