Abstract

Additive manufacturing (AM) of stainless steel is more difficult than other metallic materials, as the major alloying elements of the stainless steel are prone to oxidation during the fabrication process. In the current work, specimens of the stainless steel 316L were made by the powder laser bed fusion (P-LBF) additive manufacturing process. These specimens were investigated by electron microscopy and micro-/nano-indentation techniques to investigate the microstructural aspects and the mechanical properties, respectively. Compositionally, a similar wrought stainless steel was subjected to identical investigation, and used as a benchmark material. The microstructure of the P-LBF-processed alloy shows both equiaxed and elongated grains, which are marginally smaller (3.2-3.4 μm) than that of the wrought counterpart (3.6 μm). Withstanding such marginal gain size refinement, the increase in shear stress and hardness of the L-PBF alloy was striking. The L-PBF-processed alloy possess about 1.92-2.12 GPa of hardness, which was about 1.5 times higher than that of wrought alloy (1.30 GPa), and about 1.15 times more resistant against plastic flow of material. Similarly, L-PBF-processed alloy possess higher maximum shear stress (274.5-294.4 MPa) than that of the wrought alloy (175.9 MPa).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.