Abstract

The present study reports the microstructural and morphological changes during high energy ball milling of Cu with Ag and Graphite flakes. XRD patterns of ball milled Cu-Ag showed a reduction in the intensity of Ag peaks (1 1 1) and an increase in the lattice parameter of Cu. With an increase in milling time, the formation of metastable Cu-Ag solid solution was observed. Lattice parameter values for 40 h milled Cu (3.6169 Å) and Cu-GF composites (3.6166 Å) indicated that C does not dissolve in Cu. The lattice parameter of Cu in milled Cu-Ag-graphite flake was lower compared to milled Cu-Ag mixture indicating that graphite flakes inhibit solid solution formation. Raman spectra revealed that graphite flakes were converted into multilayer graphene after 10 h of milling. The crystallite size of Cu in the milled powders decreased with increase in milling time and reached a value of ∼25 nm after 35 h of milling. The lattice strain also increased with milling time. The D10, D50 and D90 size reduced appreciably after 5 h of milling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call