Abstract

This investigation intends to study the influence of titanium nitride (TiN) additive on the sintering behavior, mechanical features and microstructural development of TiC-based substances. For this objective, two different samples, namely monolithic TiC and TiC-5 wt% TiN, were sintered at 1900 °C using the SPS method. The specimens were held at the ultimate temperature for 10 min under 40 MPa. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were implemented to characterize the as-produced specimens. Introducing TiN increased the relative density of TiC by around 1.5%, standing next to 97%. The assessments revealed the creation of non-stoichiometric TiC1-x along with some graphitized carbon phases in the undoped ceramic. By contrast, TiN additive completely dissolved into the TiC matrix in the composite sample and a new in-situ phase (C3N4) appeared. Finally, a Vickers hardness of ~2750 HV0.1 and a flexural strength of ~450 MPa were achieved for the TiN-doped specimen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call