Abstract

U–Pb geochronology of shocked monazite can be used to date hypervelocity impact events. Impact-induced recrystallisation and formation of mechanical twins in monazite have been shown to result in radiogenic Pb loss and thus constrain impact ages. However, little is known about the effect of porosity on the U–Pb system in shocked monazite. Here we investigate monazite in two impact melt rocks from the Hiawatha impact structure, Greenland by means of nano- and micrometre-scale techniques. Microstructural characterisation by scanning electron and transmission electron microscopy imaging and electron backscatter diffraction reveals shock recrystallisation, microtwins and the development of widespread micrometre- to nanometre-scale porosity. For the first time in shocked monazite, nanophases identified as cubic Pb, Pb3O4, and cerussite (PbCO3) were observed. We also find evidence for interaction with impact melt and fluids, with the formation of micrometre-scale melt-bearing channels, and the precipitation of the Pb-rich nanophases by dissolution–precipitation reactions involving pre-existing Pb-rich high-density clusters. To shed light on the response of monazite to shock metamorphism, high-spatial-resolution U–Pb dating by secondary ion mass spectrometry was completed. Recrystallised grains show the most advanced Pb loss, and together with porous grains yield concordia intercept ages within uncertainty of the previously established zircon U–Pb impact age attributed to the Hiawatha impact structure. Although porous grains alone yielded a less precise age, they are demonstrably useful in constraining impact ages. Observed relatively old apparent ages can be explained by significant retention of radiogenic lead in the form of widespread Pb nanophases. Lastly, we demonstrate that porous monazite is a valuable microtexture to search for when attempting to date poorly constrained impact structures, especially when shocked zircon or recrystallised monazite grains are not present.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.