Abstract

Ti and V were bonded together and subjected to high-temperature treatment at 1000 or 1100 °C for 16 h to study the microstructural evolution and interfacial behavior of Ti–V diffusion interfaces. The samples were prepared by electro-polishing and analyzed using scanning electron microscopy, electron probe microanalysis, electron back-scattered diffraction, and nano-indentation. The results indicated that Ti–V diffusion bonding interfaces comprises a martensite Ti zone, a body-center-cubic Ti (β-Ti) zone, and a V-based alloy zone. They are divided by two composition interfaces with V contents of ~13.5% and ~46%. The original interface between the pure Ti and the V alloy substrate falls within the β-Ti zone. The observation of acicular-martensite rather than lath-martensite is due to the distortion caused by the β-to-α phase transformation in the adjacent pure Ti. The recrystallization of β-Ti is distributed along the interface direction. The hardness varies across the Ti–V interface bonding zones with the maximum value of 7.9 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.