Abstract

In this paper we concentrate on the microstructure of diamond-like carbon films prepared by plasma assisted chemical vapor deposition on acrylic rubber. The temperature variation produced by the ion impingement during plasma cleaning and subsequent film deposition was monitored and controlled as a function of bias voltage and treatment time. Its influence during film growth on the appearance of patterns of cracks and wrinkles, caused by the thermal stresses is evaluated. Different growth modes are proposed in order to explain the smaller patch sizes observed at negative variations of temperature. The coefficient of friction (CoF) of the samples is measured using a pin-on-disk tribometer in non-lubricated conditions. Much lower CoF values than unprotected rubber are seen, which can be correlated with the observed patch size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.