Abstract
The microstructural and electrochemical properties of anodes obtained by impregnation of the La0.4Sr0.6Ti0.8Mn0.2O3±d (LSTM) oxide system into two types of anode substrates such as Ni/ 8YSZ substrate (Ni (E)/ 8YSZ) and partially Ni removed Ni/ 8YSZ substrate (Ni(R)/8YSZ) were investigated in order to apply them as anode material for solid oxide fuel cells.All of the samples with LSTM impregnated on Ni (R)/ 8YSZ show higher electrical conductivity values than those of unimpregnated Ni (E)/ 8YSZ under dry H2 condition. The highest electrical conductivity values of 2041.2, 1877.4, and 1764.3 S/cm at 700, 800 and 900 °C can be achieved by samples with 3 wt% impregnated LSTM on Ni (R)/ 8YSZ. From the XPS analysis, the existence of a Ti metal peak on the surface of LSTM was only measured for the LSTM (3 wt%)-Ni (R)/ 8YSZ sample, metallic titanium on the surface can improve the electrical catalytic reaction.LSTM (3 wt%)-Ni (R)/ 8YSZ showed higher electrical conductivity values then those of LSTM (3 wt%)-Ni (E)/ 8YSZ in all the temperature ranges measured in the case of dry CH4 supply. Finally, the electrical conductivity of LSTM (3 wt%)-Ni (R)/ 8YSZ was stably maintained even when exposed to dry CH4 condition at 900 °C for a long time (100 h).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.