Abstract

Bi-layer coating systems comprising a Cr3C2-NiCr coating with different underlying coatings of Ni, NiCr, NiCoCrAlY, and CoNiCrAlY were deposited on 304L stainless steel substrates using the high-velocity air fuel (HVAF) process. The corrosion behavior of the coating systems was studied using electrochemical and immersion tests in 3.5 wt% NaCl at 25 °C. The higher open-circuit potential (OCP) value of the NiCoCrAlY coating (− 120 mV/SCE) compared to the value of the Cr3C2-NiCr coating (− 230 mV/SCE) revealed that the underlying NiCoCrAlY coating was sacrificially protected by Cr3C2-NiCr coating. The polarization resistance (Rp) of the bi-layer coatings with the different underlying coatings of Ni, NiCr, NiCoCrAlY and CoNiCrAlY was approximately 77, 189, 487, and 74 kΩ·cm2 respectively, while the value was 101 kΩ·cm2 for the single-layer Cr3C2-NiCr coating and 30 kΩ·cm2 for the 304L substrate, which confirmed a higher corrosion protection of the NiCoCrAlY coating. The electrochemical impedance spectroscopy (EIS) results showed that the corrosion resistance of the 304L substrate was significantly improved by adding an intermediate layer of NiCoCrAlY to the Cr3C2-NiCr coating. Results of the immersion tests confirmed that the underlying coatings in the different bi-layer coating systems acted as protective barriers. Moreover, the NiCoCrAlY coating showed the best corrosion protection among the investigated underlying coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call