Abstract

The decrease in the critical current density (J/sub c/) of YBa/sub 2/Cu/sub 3/O/sub 7-x/ (YBCO) films with increasing film thickness was investigated for 0.2 - 2.4-/spl mu/m-thick films grown on single crystal substrates. Microstructural and electrical properties were characterized by focused ion beam (FIB) microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy in a field emission scanning electron microscope, atomic force microscopy, and current-voltage measurements at 77 K in self-field. FIB cross sections directly showed that the top 30% -40% thickness of YBCO films contained pores, misoriented YBCO grains, and Ba-rich second phase particles that collectively produced a "dead top layer" which is believed to limit the J/sub c/ of YBCO films thicker than 1 /spl mu/m. A gas cluster ion beam etching and smoothing process partially removed the dead top layer and smoothed the film surface. In a 0.9-/spl mu/m-thick YBCO film, removal of a 0.22-/spl mu/m-thick dead layer yielded a 35% increase in J/sub c/ (up to 2.8 MA/cm/sup 2/) and a 25% decrease in film roughness. In a 1.3-/spl mu/m-thick YBCO film, removal of a 0.45-/spl mu/m-thick dead layer yielded an 85% increase in J/sub c/ (up to 1.1 MA/cm/sup 2/) and a 49% decrease in surface roughness. This study suggests that eliminating the dead top layer and smoothing the film surface might be key processing steps in the production of thick YBCO films with high J/sub c/.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call