Abstract

Composite nanocables with peculiar structure were synthesized using a solid–liquid–solid mechanism. Each of the nanocables consists of a crystalline core sheathed with an amorphous layer ( 40 nm in average diameter). The crystalline core of the nanocables is so fine (1– 6 nm in diameter), that it is nearly impossible to characterize them using other methods. Fortunately, the powerful high resolution electron energy loss spectroscopy (EELS) technique (with minimum beam size <1 nm ) allowed us to analyze this peculiar nanomaterial. The fine crystalline core was proved to be a hexagonal silicon carbide, while the sheathing layer was silicon oxide. High angle dark field technique was employed to map the nanocable structures. Our results show that the EELS is powerful in nanometric regime characterization, while the SiC nanocables reported here may be useful in future nanotechnology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.