Abstract

This original study investigates the damages of WC–6Co uncoated carbide tools during dry turning of AISI 1045 steel at mean and high speeds. The different wear micromechanisms are explained on the basis of different microstructural observations and analyses made by different techniques: (i) optical microscopy (OM) at macro-scale, (ii) scanning electron microscopy (SEM), with back-scattered electron imaging (BSE) at micro-scale, (iii) energy dispersive spectroscopy (EDS), X ray mapping with wavelength dispersive spectroscopy (WDS) for the chemical analyses and (iv) temperature evolution during machining. We noted that at conventional cutting speed Vc≤250m/min, normal cutting tool wear types (adhesion, abrasion and built up edge) are clearly observed. However, for cutting speed Vc>250m/min a severe wear is observed because the behavior of the WC–6Co grade completely changes due to a severe thermomechanical loading. Through all SEM micrographs, it is observed that this severe wear consists of several steps as: excessive deformation of WC–6Co bulk material and binder phase (Co), deformation and intragranular microcracking of WC, WC grain fragmentation and production of WC fragments in the tool/chip contact. Thus, the WC fragments accumulated at the tool/chip interface cause abrasion phenomena and pullout WC from tool surface. WC fragments contribute also to the microcutting and microploughing of chips, which lead to form a transferred layer at the tool rake face. Finally, based on the observations of the different wear micromechanisms, a scenario of WC–6Co damages is proposed through to a phenomenological model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.