Abstract

Martensitic transformations induced by thermally and compression deformation at room temperature in Fe–12.5 wt.% Mn–5.5 wt.% Si–9 wt.% Cr–3.5 wt.% Ni alloy were studied in detail by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). From microstructural observations, it was seen that heat treated samples exhibited regular overlapping of stacking faults and ɛ martensite plates were formed parallel to each other. Also, TEM investigations showed that the orientation relationship between γ (fcc) and ɛ (hcp) phases corresponds to Shoji–Nishiyama type. With applied low plastic deformation rate, only ɛ martensite occurred in austenite grain. As a consequence, 4 and 25% plastic deformation at room temperature caused ɛ martensite formation in austenite phase and the new ɛ (hcp) and α′ (bcc) martensite formation in martensite phases, respectively. Orientation relationship between ɛ and α′ phases was found by the electron diffraction analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.