Abstract

The γ(f.c.c.)– ε(h.c.p.) martensitic transformation is achieved by the introduction of stacking faults on each second compact plane of the f.c.c. structure. These stacking faults are created by the motion of Shockley partial dislocations. Depending on the Burgers vector of these dislocations, the martensite does not require a macroscopic shape change (self-accommodated martensite) or a homogeneous lattice shape change (monopartial martensite). Based on the monopartial nature of the stress-induced martensite, a model describing the martensitic morphology in the Fe–Mn–Si based shape memory alloys is presented. The theoretical results are compared with some observations in a Fe–Mn–Si–Cr–Ni shape memory alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.