Abstract

The 3D reconstruction based on tomography technology enables quantitative and qualitative microstructural analysis of complex multiphase oxide structures. This powerful approach is widely investigated in diverse areas, in particular, gaining more importance in solid oxide electrochemical cells (SOCs) fields. SOCs are promising energy conversion devices with high efficiency, however, they have complex and porous/dense multilayered microstructures, which are closely related to the electrochemical reaction in the electrodes, thus, one of the major factors determining overall output performance of SOCs. Therefore, it is necessary to quantify the microstructural parameters of the cell. A focused ion beam-scanning electron microscope (FIB-SEM) dual beam system is one well-established method to obtain tomographic images to reconstruct 3D microstructures. It has an appropriate scale of tenth of nm to μm-level with high spatial resolution to represent the microstructural characteristics of the SOC electrodes. This presentation is intended to introduce our progress on 3D reconstruction techniques to quantitatively analyse SOCs, obtaining microstructural features such as particle size, connectivity, tortuosity, contact area, and triple phase boundary density. These in-depth analyses are helpful in extensively understanding electrochemical behavior in SOC electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call