Abstract
PurposeIn order to give full play to the function of noise reduction of asphalt pavement, it is necessary to understand its internal sound absorption mechanism. Therefore, the purpose of this study is to establish a micro model of the pore structure of asphalt mixture with the help of finite element method (FEM), discuss the noise reduction mechanism of asphalt pavement from the micro perspective and analyze and evaluate the noise attenuation law of the pore structure.Design/methodology/approachThe FEM was used to establish the microscopic model of the pore structure of asphalt mixture. Based on the principle of acoustics, the noise reduction characteristics of asphalt pavement were simulated. The influence of gradation and pore characteristics on the noise reduction performance of asphalt pavement was analyzed.FindingsThe results show that the open graded friction course-13 (OGFC-13) has excellent performance in noise reduction. The resonant sound absorption structure composed of its large porosity can effectively reduce the pavement noise. For asphalt concrete-13 (AC-13) and stone matrix asphalt-13 (SMA-13), the less resonant sound absorption structure makes them have poor sound absorption effect. In addition, the variation rules of noise transmission loss (TL) curve and sound absorption coefficient curve of three graded asphalt mixtures were obtained. At the same time, the peak noise reduction values of OGFC-13, AC-13 and SMA-13 were obtained, which were 650Hz, 1000Hz and 800Hz, respectively.Originality/valueThe results show that the simulation results can well reflect and express the experimental results. This will provide a reference for further exploring the sound absorption mechanism and its variation rule of porous asphalt pavement. It also has some positive significance for the application of low noise asphalt pavement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Multidiscipline Modeling in Materials and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.