Abstract

Zr62Cu17Ni13Al8 in the supercooled liquid state is expected to be micro-formable at a relatively low stress. We used X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative high-resolution TEM (HRTEM) to investigate the microstructures of Zr62Cu17Ni13Al8 amorphous alloy after compression test. The alloy exhibited the homogeneous amorphous microstructure with some crystalline phases dispersed in the matrix. According to the XRD results, under the certain strain rate in the supercooled liquid state, the alloy showed higher crystallization at the higher heat treatment temperature. However, at the same heat treatment temperature, the alloy deformed under low strain rate showed higher crystallization. The β crystalline phase particles with spherical shape were detected by SEM and TEM. The sample with higher strain rate and temperature showed longer shear bands. Nano-voids formed by the coalescence of excess free volume in shear bands were investigated by quantitative HRTEM. Compared with the undeformed area, in the shear band, nanovoids were identified in the deformed area through quantitative HRTEM simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.