Abstract

Bimanual coordination is impaired in Parkinson’s disease affecting patients’ ability to perform activities of daily living and to maintain independence. Conveyance of information between cortical and subcortical areas is essential for bimanual coordination and relies on the integrity of cerebral microstructure. As pathological deposition of alpha-synuclein compromises microstructure in Parkinson’s disease, we investigated the relationship between microstructural integrity and bimanual coordination using diffusion-weighted MRI in 23 patients with Parkinson’s disease (mean age ± standard deviation: 56.0 ± 6.45 years; 8 female) and 26 older adults (mean age ± standard deviation: 58.5 ± 5.52 years). Whole-brain analysis revealed specific microstructural alterations between patients and healthy controls matched for age, sex, handedness, and cognitive status congruent with the literature and known Parkinson’s disease pathology. A general linear model revealed distinct microstructural alterations associated with poor bimanual coordination in Parkinson’s disease, corrected for multiple comparisons using a permutation-based approach. Integrating known functional topography, we conclude that distinct changes in microstructure cause an impediment of structures involved in attention, working memory, executive function, motor planning, motor control, and visual processing contributing to impaired bimanual coordination in Parkinson’s disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.