Abstract

Development of a successful remote sensing instrument for soil moisture relies on the accurate knowledge of the soil dielectric constant (/spl epsiv//sub soil/) to its moisture content. Two existing methods for measurement of dielectric constant of soil at low and high frequencies are, respectively, the time domain reflectometry and the reflection coefficient measurement using an open-ended coaxial probe. The major shortcoming of these methods is the lack of accurate determination of the imaginary part of E/sub soil/. In this paper, a microstrip ring resonator is proposed for the accurate measurement of soil dielectric constant. In this technique the microstrip ring resonator is placed in contact with soil medium and the real and imaginary parts of E/sub soil/ are determined from the changes in the resonant frequency and the quality factor of the resonator, respectively. The solution of the electromagnetic problem is obtained using a hybrid approach based on the method of moments solution of the quasistatic formulation in conjunction with experimental data obtained from reference dielectric samples. Also, a simple inversion algorithm for E/sub soil/=E/sup '//sub r/-j/spl epsiv/E/sup "//sub r/ based on regression analysis is obtained. It is shown that the wide dynamic range of the measured quantities provides excellent accuracy in the dielectric constant measurement. A prototype microstrip ring resonator at L-band is designed and measurements of soil with different moisture contents are presented and compared with other approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.