Abstract
Cortical activity patterns occupy a small subset of possible network states. If this is due to intrinsic network properties, microstimulation of sensory cortex should evoke activity patterns resembling those observed during natural sensory input. Here, we use optical microstimulation of virally transfected layer 2/3 pyramidal neurons in the mouse primary vibrissal somatosensory cortex to compare artificially evoked activity with natural activity evoked by whisker touch and movement ("whisking"). We find that photostimulation engages touch- but not whisking-responsive neurons more than expected by chance. Neurons that respond to photostimulation and touch or to touch alone exhibit higher spontaneous pairwise correlations than purely photoresponsive neurons. Exposure to several days of simultaneous touch and optogenetic stimulation raises both overlap and spontaneous activity correlations among touch and photoresponsive neurons. We thus find that cortical microstimulation engages existing cortical representations and that repeated co-presentationof natural and artificial stimulation enhances this effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.