Abstract

Research on animal robots utilizing neural electrical stimulation is a significant focus within the field of neuro-control, though precise behavior control remains challenging. This study proposes a parameter-adaptive strategy to achieve accurate path tracking. First, the mapping relationship between neural electrical stimulation parameters and corresponding behavioral responses is comprehensively quantified. Next, adjustment rules related to the parameter-adaptive control strategy are established to dynamically generate different stimulation patterns. A parameter-adaptive path tracking control strategy (PAPTCS), based on fuzzy control principles, is designed for the precise path tracking tasks of pigeon robots in open environments. The results indicate that altering stimulation parameter levels significantly affects turning angles, with higher UPN and PTN inducing changes in the pigeons' motion state. In experimental scenarios, the average control efficiency of this system was 82.165%. This study provides a reference method for the precise control of pigeon robot behavior, contributing to research on accurate target path tracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.