Abstract

Muscle synergies have been proposed as a mechanism to simplify movement control. Whether these coactivation patterns have any physiological reality within the nervous system remains unknown. Here we applied electrical microstimulation to motor cortical areas of rhesus macaques to evoke hand movements. Movements tended to converge toward particular postures, driven by synchronous bursts of muscle activity. Across stimulation sites, the muscle activations were reducible to linear sums of a few basic patterns-each corresponding to a muscle synergy evident in voluntary reach, grasp, and transport movements made by the animal. These synergies were represented nonuniformly over the cortical surface. We argue that the brain exploits these properties of synergies-postural equivalence, low dimensionality, and topographical representation-to simplify motor planning, even for complex hand movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.