Abstract

We have fabricated and tested short focal-length compound refractive lenses (CRLs) composed of microbubbles embedded in epoxy encased in glass capillaries. The interface between the bubbles formed 90 to 350 spherical biconcave microlenses reducing the overall focal length inversely by the number of lenses or bubbles. When compared with CRLs manufactured using other methods, the microbubble lenses have shorter focal lengths with higher transmissions and larger gains for moderate energy x rays (e.g., 7–20 keV). We used beamline 2–3 at the Stanford Synchrotron Radiation Laboratory and beamline 5BM-D-DND at the Advanced Photon Source to measure focal lengths between 100–250 mm with lens apertures varying between 97 and 321 μm. Transmission profiles were measured giving, for example, a peak transmission of 46% for a 240 mm focal length CRL at 20 keV. The focal-spot sizes were also measured yielding, for example, a vertical spot size of 1.2 μm resulting from an approximate 20-fold demagnification of the APS 23 μm source size. The measured gains in intensity over that of unfocused beam were between 9 and 26.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call