Abstract

Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell.

Highlights

  • Parasitism is a type of biological interaction between organisms of different species whereby the parasite benefits at the expense of the host

  • A total of 6 experimental groups were established as follows: A-group experimentally infected with N. apis; AH- group experimentally infected with N. apis and treated with cycloheximide; C-group experimentally infected with N. ceranae; CH-group experimentally infected with N. ceranae and treated with cycloheximide; T- Control, bees not infected with Nosema sp.; the uninfected control group (TH)—Control, bees not infected with Nosema sp. but treated with cycloheximide

  • All the bees were successfully infected by either N. ceranae or N. apis, while no cross-infection between groups was detected and there was no infection in the uninfected groups

Read more

Summary

Introduction

Parasitism is a type of biological interaction between organisms of different species whereby the parasite benefits at the expense of the host. In order to limit pathogen growth, these systems include mechanism such as the fusion of phagolysosomals, the production of reactive oxygen and reactive nitrogen intermediates, nutrient sequestration or cell suicide (apoptosis) in order

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call