Abstract

The presence of glass microspherules enclosing relict grains, shattered quartz and silicon carbide in white sandstone beds near the Jurassic-Cretaceous boundary in west central Sinai indicates a cosmic impact event. Characterization of the impact microspherules and proposing a reasonable scenario for their origin are the aims of this work. Field observations, optical, binocular, scanning electron and high-resolution transmitted electron microscopy investigations and chemical analyses were carried out. The study revealed that glass microspherules have high Al2O3 and FeO contents and low CaO and MgO contents. The high content of Al2O3 indicates that the source of microtektite-like microspherules is attributed to the melting of a clay-rich sandstone and carbonaceous matter, while the high content of FeO indicates admixing with projectile matter. The reaction between silica and carbon was carried out under conditions of high temperature (T > 1000&#176C) and carbon (C/Si > 1) which resulted in the production of silicon carbide with microdiamond intergrowth. Consequently, this intergrowth is in accordance with the impact origin via rapid condensation and growth within a vapor phase. In spite of the fact that no source crater has been recognized to date in the study area, the authors propose at least a single cosmic impact event scenario for the recorded glass microspherules in west central Sinai. The impact excavated the Paleozoic siliciclastic sedimentary rocks and then the glass microspherules showered the area of study. The deposition of microtektite-like glass particles within the white sandstone beds of the Malha Formation took place in the fluvial plain terrestrial environment. This setting precluded severe post-depositional reworking, yielding preservation of the glass particles in a primary layer. Eventually, lateral migration of the braided channels led to the reworking of the microspherules layer and the spatial dispersal of the shattered quartz.

Highlights

  • The most valuable source of extraterrestrial material falling to the Earth is represented by microscopic Cosmic Dust particles (CD) together with larger meteorites

  • We report for the first time the presence of impact glass microspherules in Early Cretaceous white sandstone beds in west central Sinai

  • The upper part of the Nubian Sandstone succession is defined as Malha Formation, which is differentiated into ferruginous sandstone sequence (Late Jurassic in age) and white sandstone sequence (Early Cretaceous in age) [24]

Read more

Summary

Introduction

The most valuable source of extraterrestrial material falling to the Earth is represented by microscopic Cosmic Dust particles (CD) together with larger meteorites. Physical tracers include actual meteorites, cosmic spherules, impact spherules, spinels and ocean-impact melt debris [1]. The so-called ablation spherules are formed whilst the flying cosmic bodies through the Earth’s atmosphere are ablated, i.e., their surfaces are heated, they are dissolved, evaporated and oxidized, and the melt is blown off under the force of the incoming air [3]. The higher velocity atmospheric entry of meteoroids affects the physical properties of cosmic dust [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call