Abstract

Conventionally, rechargeable batteries with a fast charge-discharge rate, while being able to be implemented in large-scale applications with low prices, are critical for new energy storage systems. In this work, first-principles simulations were employed to theoretically investigate the insertion of sodium into the Na(2)Ti(3)O(7) structure. The result discovered that the theoretical capacity of Na(2)Ti(3)O(7) was 311 mA h g(-1). Furthermore, a microspheric Na(2)Ti(3)O(7) material consisting of tiny nanotubes of ca. 8 nm in outside diameter and a few hundred nanometers in length has been synthesized. The galvanostatic charge-discharge measurements, using the as-prepared Na(2)Ti(3)O(7) nanotubes as a working electrode with a voltage range of 0.01-2.5 V vs. Na(+)/Na, disclosed that a high capacity was maintained even under an ultrafast charge-discharge rate. At a current density of 354 mA g(-1), the discharge capacity was maintained at 108 mA h g(-1) over 100 cycles. Even at a very large current density of 3540 mA g(-1), the discharge capacity was still 85 mA h g(-1). HRTEM analysis and electrochemical tests proved that sodium ions could not only intercalate into the Na(2)Ti(3)O(7) crystal, but could also be stored in the intracavity of the nanotubes. All of the results disclose that the as-prepared Na(2)Ti(3)O(7) nanotubes are able to be used as anode materials in large-scale applications for rechargeable sodium-ion batteries at low cost while maintaining excellent performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call