Abstract

Amphiphilic multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks were used as matrix material for protein-loaded microspheres. The efficiency of lysozyme entrapment by a double emulsion method was found to depend on the swelling behavior of the polymers in water and decreased from 100% for polymers with a degree of swelling of less than 1.8 to 11% for PEG–PBT copolymers with a degree of swelling of 3.6. The particle size could be controlled by varying the concentration of the polymer solution used in the microsphere preparation. An increase in the polymer concentration resulted in a proportional increase in the particle size. The in vitro release profiles of the encapsulated model protein lysozyme could be precisely tailored by variation of the copolymer composition and the size of the microspheres. Both a slow continuous release of lysozyme, and a fast release which was completed within a few days could be obtained. The release behavior, attributed to a combination of diffusion and polymer degradation, could be described by a previously developed model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.