Abstract

Pomegranate shaped microspheres consisting of Si nanoparticles coated with a TiO2 shell and wrapped with reduced graphene oxide sheets (Si@TiO2@rGO) have been designed and fabricated. A sol–gel method is applied to coat the Si nanoparticles with a TiO2 shell. An electrostatic interaction assisted spray drying process combined with a calcination step have been explored to achieve the wrapping of graphene and the formation of the pomegranate shaped microspheres. The layer of anatase phase TiO2 shows a higher strength to withstand the structural deformation of Si. The new phase derived from the TiO2 layer after the lithium embedding can acted as high-speed diffusion channels for lithium ions. The formation of the porous microspheres provided adaptive space for volume expansion of Si, while the wrapping of the Si@TiO2 nanoparticles with flexible graphene relieves the internal stress and further improves the conductivity of the Si electrode. The synergistic effects of the bilayer endow the Si@TiO2@rGO composite a superior reversible capacity of 1228.7 mAh g−1 after 400 cycles at a current density of 0.5 A g−1 and an excellent cycling stability of 776 mAh g−1 after 1000 cycles at a high current density of 1 A g−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call