Abstract
Superhydrophobic membranes with extreme liquid water repellency property are good candidates for waterproof and breathable application. Different from the mostly used strategies through either mixing or postmodifying base membranes with perfluorinated compounds, we report in this work a facile methodology to fabricate superhydrophobic microporous membranes made up of pure poly(vinylidene fluoride) (PVDF) via a high-humidity induced electrospinning process. The superhydrophobic property of the PVDF microporous membrane is contributed by its special microsphere-fiber interpenetrated rough structure. The effective pore size and porosity of the PVDF membranes could be well tuned by simply adjusting the PVDF concentrations in polymer solutions. The membrane with optimized superhydrophobicity and porous structure exhibits improved waterproof and breathable performance with hydrostatic pressure up to 62 kPa, water vapor transmission rate (WVT rate) of 10.6 kg m-2 d-1, and simultaneously outstanding windproof performance with air permeability up to 1.3 mm s-1. Our work represents a rather simple and perfluorinated-free strategy for fabricating superhydrophobic microporous membranes, which matches well with the environmentally friendly requirement from the viewpoint of practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.