Abstract
LiFe0.5Mn0.5PO4/C composite material (denoted as SP-LFMP/C) with macro/nano hierarchical porous structure by adding the composite carbon source (i.e., 100 nm polystyrene sphere and 300 nm carbon sphere) is fabricated via a spray dry process. The SP-LFMP/C composite exhibits a 3D hierarchical structure with a high surface area (34.63 m2 g−1) and a wide pore size distribution (2–100 nm). The characteristic properties of the samples are examined using X-ray diffraction, micro-Raman spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. The SP-LFMP/C composite achieves discharge capacities of 161, 160, 157, 146, 137, and 115 mAh g−1 at 0.2, 0.5, 1, 3, 5, and 10 C, respectively. Moreover, the SP-LFMP/C material also exhibits excellent cycling performance and stability at 55 °C during the 300 cycle test. These results indicate that the SP-LFMP/C cathode material is an excellent candidate for application in high-energy Li-ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.