Abstract
We recently described the development and validation of a highly sensitive and specific microsphere immunoassay capable of simultaneously quantifying three domestic cat cytokines in tissue culture supernatant. Here we describe the modification of this assay to measure interferon gamma (IFNγ), interleukin (IL)-10 and IL-12/IL-23 p40 (IL-12/23) in domestic cat plasma, report values obtained from plasma collected after feline immunodeficiency virus (FIV) exposure, and compare plasma concentrations to blood cell mRNA expression. The validated quantitation limits of this assay are 31–1000pg/ml for IFNγ, 63–2000pg/ml for IL-10, and 20–625pg/ml for IL-12/23. Plasma cytokine levels from domestic cats infected with pathogenic and/or apathogenic FIV were determined at 3–4 and 7–8weeks post-infection. IL-12/23 was elevated (p<0.05) during acute infection with both FIV strains in two similar studies, conducted five years apart in different feline cohorts (n=44 total animals). IL-12/23 concentrations ranged from 377 to 1904pg/ml in naïve cats and 552 to 3460pg/ml in infected cats. In contrast, the majority of plasma samples had IFNγ and IL-10 concentrations below the lowest standard tested. The inability to consistently detect levels of IFNγ and IL-10 in plasma, despite the fact that mRNA changes were detected, suggests that these cytokines may be secreted and/or cleared in a more highly regulated manner than IL-12/23, or perhaps exert local effects under tighter peripheral constraints and/or at a lower effective concentration.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.