Abstract
Nanomanipulation provides high operating accuracy and has been successfully applied in many fields such as nanoparticle assembly, nanowire alignment, and semiconductor device manufacturing. However, because of the limits of optical diffraction, the use of nanomanipulation is challenged by a lack of visual feedback at the nanoscale, and thus, its efficiency is difficult to be improved. In this study, we developed a novel method of microlens-enhanced nanomanipulation capable of real-time super-resolution imaging. Nanomanipulation was performed using the atomic force microscopy (AFM) mechanism by coupling a microlens to an AFM probe, and optical imaging with a minimum characteristic size of 80 nm is realized by combining the microlens with the optical imaging system. Under the conditions of fluorescent illumination and white light illumination, nanomanipulations were achieved under real-time visual guidance for fluorescent nanoparticles with a diameter of 100 nm and silver nanowires with a diameter of 80 nm, respectively. This method enables the possibility of in situ observation and manipulation, which can potentially be used for biological samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.