Abstract

In the present work, we have investigated the combination of a superresolution microsphere-assisted 2D imaging technique with low-coherence phase-shifting interference microscopy. The imaging performance of this technique is studied by numerical simulation in terms of the magnification and the lateral resolution as a function of the geometrical and optical parameters. The results of simulations are compared with the experimental measurements of reference gratings using a Linnik interference configuration. Additional measurements are also shown on nanostructures. An improvement by a factor of 4.7 in the lateral resolution is demonstrated in air, thus giving a more isotropic nanometric resolution for full-field surface profilometry in the far field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call