Abstract
Solvation of biomolecules and their building blocks has a strong influence on their structure and function. Herein we characterize the initial microsolvation of the 5-hydroxyindole cation (5HI+) in its 2A″ ground electronic state with nonpolar and quadrupolar ligands (L=Ar, N2) by infrared photodissociation (IRPD) spectroscopy of cold and mass-selected 5HI+-Ln (n≤3) clusters in a molecular beam and dispersion-corrected density functional theory calculations (B3LYP-D3/aug-cc-pVTZ). The isomer-selective OH and NH stretch frequency shifts (ΔνOH/NH) disentangle the competition between H-bonding to the acidic OH and NH groups and π-stacking to the conjugated bicyclic aromatic π-electron system, the intermolecular interaction strengths, and the cluster growth sequence. For 5HI+-Arn, H-bonding and π-stacking strongly compete, indicating that dispersion forces are important for the interaction of 5HI+ with nonpolar ligands. In contrast, for 5HI+-(N2)n clusters, the H-bonds are much stronger than the π-bonds and largely determine the initial solvation process. In all clusters, the OH…L bonds are stronger than the NH…L bonds followed by the π-bonds. The interaction of 5HI+ with N2 is roughly twice stronger than with Ar, mainly due to the additional quadrupole moment of N2. The nature and strength of the individual interactions are quantified by the noncovalent interaction approach. Comparison of 5HI+-L with the corresponding neutral clusters reveals the strong impact of ionization on the total and relative interaction strengths of the H-bonds and π-bonds. In addition, comparison of 5HI+-L with corresponding clusters of the phenol, indole, and pyrrole radical cations illustrates the effects of substitution of functional groups and the addition of aromatic rings to the various subunits of 5HI on the intermolecular potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.