Abstract

Depolarized Interferometric Fiber Optic Gyroscopes (D-IFOGs) that are constructed with inexpensive single mode (SM) fiber have provided an opportunity for developers to meet Army emerging missions goals for affordable, small volume, reliable inertial guidance systems for use in small missiles, munitions, and future micro-unmanned autonomous vehicles. However, there remain several vital issues associated with substantially reducing the diameter of the sensor coil. Optical fiber that is precision-wound onto a micro coil experiences increased stress due to small radius bending, fiber distortions at crossover sites, and increased interlayer pressures as a result of multiple layers of fiber wound under tension. Tension and small radius bending stresses can have a detrimental effect on the performance of D-IFOGs. Therefore, other scenarios for the application of SM fiber to a micro-sensor coil must be considered. One scheme involves taking advantage of the bending-induced birefringence and employing the low cost SM fiber as a polarization-maintaining (PM) fiber. The mechanics of how a substantial reduction in the coil radius produces PM fiber properties in SM fiber is investigated under this research effort. Conventional and specialty SM fibers are characterized to identify optimal fibers for the development of micro-sensor coils. The results from extinction ratio measurements on the SM fibers and micro-sensor coils are presented in this paper. The significant cross coupling suggests that scattering centers are present in very small radius bending. Also, measurements show that optical loss is significant in micro IFOG coils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.