Abstract

The rock mass is susceptible to instability and damage during cavern construction. The blast-induced cracking process of the rock mass contains a wealth of information about the precursors of instability, and the identification of fracture nucleation signals is a prerequisite for effective hazard warning. A laboratory mechanical test and microseismic (MS) monitoring were carried out in the Baihetan Cavern to investigate the fracture nucleation process in the rock mass. MS monitoring shows that pre-existing microcracks were closed or new cracks were generated under the action of high stress, which caused the migration of microcracks. As the crack density increases, the fracture interaction gradually increases. The study of the rock fracture nucleation mechanism helps to reveal the MS sequences during the rock fracture process, and the fore-main shock was found in the MS sequence during access tunnel excavation. This study can effectively provide guidance for the early warning of rock mass failure and the stability analysis of underground caverns under blasting excavation disturbance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call